Элементарное событие

В теории вероятностей элементарное событие или событие-атом – это подмножество пространства исходов случайного эксперимента, которое состоит только из одного элемента. Важно заметить, что элементарное событие – это всё ещё множество, состоящее из одного элемента пространства исходов, но не сам элемент. Однако элементарные события обычно записываются как элементы, а не как множества с целью упрощения, когда это не может вызвать недоразумения.

Примеры пространств исходов эксперимента, S , и элементарных событий:

Элементарные события могут иметь вероятности, которые строго положительны, нули, неопределенны, или любая комбинация из этих вариантов. Например, любое дискретное вероятностное распределение определяется вероятностями того, что может быть названо элементарными событиями. Напротив, все элементарные события имеют вероятность нуль для непрерывного распределения. Смешанные распределения, не будучи ни непрерывными, ни дискретными, могут содержать атомы , которые могут мыслиться как элементарные (т.е. события-атомы ) события с ненулевой вероятностью. В теории меры в определении вероятностного пространства вероятность произвольного элементарного события не могла быть определена до тех пор, пока математики не увидели различие между пространством исходов S и событиями, которые представляют интерес, и которые определяются как элементы σ-алгебры событий из S .

Источник: http://ru.math.wikia.com

Вы можете оставить комментарий, или ссылку на Ваш сайт.

Оставить комментарий

Вы должны быть авторизованы, чтобы разместить комментарий.